Extremely large magnetoresistance in few-layer graphene/boron–nitride heterostructures

نویسندگان

  • Kalon Gopinadhan
  • Young Jun Shin
  • Rashid Jalil
  • Thirumalai Venkatesan
  • Andre K. Geim
  • Antonio H. Castro Neto
  • Hyunsoo Yang
چکیده

Understanding magnetoresistance, the change in electrical resistance under an external magnetic field, at the atomic level is of great interest both fundamentally and technologically. Graphene and other two-dimensional layered materials provide an unprecedented opportunity to explore magnetoresistance at its nascent stage of structural formation. Here we report an extremely large local magnetoresistance of ∼2,000% at 400 K and a non-local magnetoresistance of >90,000% in an applied magnetic field of 9 T at 300 K in few-layer graphene/boron-nitride heterostructures. The local magnetoresistance is understood to arise from large differential transport parameters, such as the carrier mobility, across various layers of few-layer graphene upon a normal magnetic field, whereas the non-local magnetoresistance is due to the magnetic field induced Ettingshausen-Nernst effect. Non-local magnetoresistance suggests the possibility of a graphene-based gate tunable thermal switch. In addition, our results demonstrate that graphene heterostructures may be promising for magnetic field sensing applications.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A hybrid MBE-based growth method for large-area synthesis of stacked hexagonal boron nitride/graphene heterostructures

Van der Waals heterostructures combining hexagonal boron nitride (h-BN) and graphene offer many potential advantages, but remain difficult to produce as continuous films over large areas. In particular, the growth of h-BN on graphene has proven to be challenging due to the inertness of the graphene surface. Here we exploit a scalable molecular beam epitaxy based method to allow both the h-BN an...

متن کامل

Inversion of Spin Signal and Spin Filtering in Ferromagnet|Hexagonal Boron Nitride-Graphene van der Waals Heterostructures.

Two dimensional atomically thin crystals of graphene and its insulating isomorph hexagonal boron nitride (h-BN) are promising materials for spintronic applications. While graphene is an ideal medium for long distance spin transport, h-BN is an insulating tunnel barrier that has potential for efficient spin polarized tunneling from ferromagnets. Here, we demonstrate the spin filtering effect in ...

متن کامل

Bipolar doping of double-layer graphene vertical heterostructures with hydrogenated boron nitride.

Using first-principles calculations, we examined the bipolar doping of double-layer graphene vertical heterostructures, which are constructed by hydrogenated boron nitride (BN) sheets sandwiched into two parallel graphene monolayers. The built-in potential difference in hydrogenated BN breaks the interlayer symmetry, resulting in the p- and n-type doping of two graphene layers at 0.83 and -0.8 ...

متن کامل

Continuous growth of hexagonal graphene and boron nitride in-plane heterostructures by atmospheric pressure chemical vapor deposition.

Graphene-boron nitride monolayer heterostructures contain adjacent electrically active and insulating regions in a continuous, single-atom thick layer. To date structures were grown at low pressure, resulting in irregular shapes and edge direction, so studies of the graphene-boron nitride interface were restricted to the microscopy of nanodomains. Here we report templated growth of single cryst...

متن کامل

In-situ epitaxial growth of graphene/h-BN van der Waals heterostructures by molecular beam epitaxy

Van der Waals materials have received a great deal of attention for their exceptional layered structures and exotic properties, which can open up various device applications in nanoelectronics. However, in situ epitaxial growth of dissimilar van der Waals materials remains challenging. Here we demonstrate a solution for fabricating van der Waals heterostructures. Graphene/hexagonal boron nitrid...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2015